NaFeSnO4: Tunnel structured anode material for rechargeable sodium-ion batteries
نویسندگان
چکیده
منابع مشابه
Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries.
Anatase TiO2 nanocrystals were successfully employed as anodes for rechargeable Na-ion batteries for the first time. The mesoporous electrodes exhibited a highly stable reversible charge storage capacity of ~150 mA h g(-1) over 100 cycles, and were able to withstand high rate cycling, fully recovering this capacity after being cycled at rates as high as 2 A g(-1).
متن کاملThe disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries.
The disodium salt of 2,5-dihydroxy-1,4-benzoquinone has been prepared and proposed as anode material for rechargeable sodium ion batteries for the first time, showing an average operation voltage of ∼1.2 V, a reversible capacity of ∼265 mA h g(-1), a long cycle life (300 cycles), and high rate capability.
متن کاملAnode for Sodium-Ion Batteries
DOI: 10.1002/aenm.201500174 The continuous pulverization of alloy anodes during repeated sodiation/desodiation cycles is the major reason for the faster capacity decay. However, if these elements can form a compound (such as Sn 4 P 3 ) after each Na extraction, the pulverization of these elements can be partially repaired and the accumulation of pulverization can be terminated. Therefore, we ca...
متن کاملNaTiO2: a layered anode material for sodium-ion batteries
Lithium-ion batteries are currently the energy storage technology of choice in portable electronic devices and electric vehicles. In recent years, sodium-ion batteries have been actively restudied as a promising alternative because of the abundance of sodium resources and the high capacity cathodes available. But as graphitic carbon can not be used as anode material, as it is in lithium batteri...
متن کاملNiobium(V) Oxynitride: Synthesis, Characterization, and Feasibility as Anode Material for Rechargeable Lithium-Ion Batteries
The decomposition reaction of niobium(V) oxytrichloride ammoniate to the oxynitride of niobium in the 5+ oxidation state was developed in a methodological way. By combining elemental analysis, Rietveld refinements of X-ray and neutron diffraction data, SEM and TEM, the sample compound was identified as approximately 5 nm-diameter particles of NbO(1.3(1))N(0.7(1)) crystallizing with baddeleyite-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochemistry Communications
سال: 2020
ISSN: 1388-2481
DOI: 10.1016/j.elecom.2020.106873